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Theory of the Spontaneous Polarization
of the Adsorbed Monolayer of Polar Molecules.
The Collective Variables Method
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The theory of the spontaneous polarization of the adsorbed monolayer of polar
molecules is developed using the collective variables method. The total potential
of the system is represented as the sum of the one-body and two-body
interaction potentials. The one-body potential depends on the orientation of the
molecular dipoles in the external electric field and on the interactions between
the molecules and the substrate. The two-body potential consists of the sum of
intermolecular potentials which can be separated into the “short-range” part
describing the orientation-independent interaction at distances, and the long-
range part dependent on both the coordinates and the orientations of the
interacting species. The variation of the configurational Helmholtz free energy
of the system related to the long-range orientational interactions is shown to
consist of three terms describing different modes of interactions of density fluc-
tuations: (a) neglect of particle’s density fluctuation or self-consistent mean field
approximation (SCMF), (b) harmonic oscillations of the particle’s density—the
random phases approximation (RPA), and (c) various unharmonic interactions
of the fluctuation waves. In the SCMF approximation using the assumption of
the multiplicative separation of the high-order distribution function the singlet
distribution function is calculated and the polarization vector of the adsorbed
monolayer is determined. The corrections to the singlet distribution function
arising from the terms (b) and (c) of the free energy are calculated. It is shown
that the spontaneous polarization of the adsorbed monolayer of polar molecules
may be regarded as the first-order phase transition.
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1. INTRODUCTION

In the previous paper'” the spontaneous polarization of the adsorbed
monolayer of polar molecules was treated using the dipole—dipole pair
interaction potential and the SCMF approximation for the polarization, and
the conditions of the formation of the polydomain structure of the surface
polarization were considered.

In this paper we present the general theory of the spontaneous
polarization of an adsorbed monolayer of polar molecules with the pair
interaction potential dependent on the distance between the molecules and on
their mutual orientations. The pair interaction potential can be separated into
two parts, (1) the “short-range” term describing the interactions at short
distances and independent on the molecular orientations and (2) the long-
range part, which is orientation dependent. This separation is in fact conven-
tional, and in all of what follows the terms independent on the molecular
orientations will be attributed for convenience to the “short-range” part.

We calculate the variation of the configurational Helmholtz free energy
associated with the long-range interactions using the method of the collective
variables described in Refs. 2 and 3. The long-range interaction is treated
against the “short-range” background, i.e., using this short-range part as a
basis with the various account for the interaction of the density oscillation
modes, which are the collective variables. As the result the variation of the
configurational free energy can be expanded into the (infinite) series with the
successive terms accounting for different character of the interaction of the
density fluctuations in the long-range interaction, that is, for the different
degrees of screening of the initial long-range interaction. It is convenient to
represent each term of the series as a diagram involving both complex
vertices which describe the correlators of the products of spherical functions
with variables dependent on the molecular orientations in the adsorbed
moenolayer, and lines denoting the pair correlation function of the system.
Under certain statistical assumptions (the multiplicative separation of the
‘higher-order correlation functions in the SCMF approximation and low
values of the polarization vector) one can restrict oneself to the calculation
of the first few terms in the expansions of the free energy to evaluate the
singlet distribution function and the polarization of the system. The character
of the dependence of the polarization on the external electric field shows that
the spontaneous polarization arises as a first-order phase transition.

The approach®® taken as a principle of the present work can be
compared with the expansion of the molecular distributions and the
Helmholtz free energy in the long-range part of the interaction potential.*"'”
The first few terms of this expansion give results identical to the one
obtained using our approach, leading to the known SCMF and RPA. In this
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work the diagrams are used to account for the higher-order terms of the
expansion and in the most simple cases (e.g., homogeneous systems without
ordering) some infinite classes of these diagrams can be grouped into closed-
form expressions giving the corrections to the SCMF and RPA methods.®

The alternative to the method described in the present paper is the
approach which treats the long-range interactions “against the background”
of the reference system.Y The collective variables are introduced by
Gaussian transformation; however, the expressions for thermodynamic
potentials and correlation functions have not been studied in detail (cf. with
Ref. 3).

2. BASIC EQUATIONS

We consider the structure and correlation properties of the polar
molecules in the adsorbed submonolayer. The limitation to a single
monolayer (instead of the more general discussion on the multilayer filling of
the substrate surface) is justified, perhaps, for the adsorbents of the high
expressed chemical interactions with the adsorbate molecules. In this case
the monolayer of the molecules is formed with the mobility and orientation
sharply different from the corresponding properties of volume phase (see
below). The monolayer limited by the substrate on one side is submerged in
the “solvent,” consisting of the molecules of the monolayer itself as well as
the molecules of different nature which are in the space above the monolayer.

Consider the calculation of the configurational integral

ONT, $) = | exp(-Uy)(er) 1)

for a system of interacting molecules in an adsorbtion monolayer with
surface area S. Here f; = 1/k,T, Boltzmann’s constant k, and Kelvin
temperature 7, the integration in (1) extends over the configurational space
of N molecules, (dI')=T]}.,dIl, where dI',=dR,d(;, dR; the surface
element and d¢; is related to the element of space angle d2; with the relation
d¢, = dQ,/2x.

The total potential energy of the system may be represented as

Uy=%(2)+ UR, Q) @)

where the first term is the sum of one-body interactions, including the energy
of the molecule possessing the dipole moment d; and locayed at point i of the
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surface in the external electric field E,, and the energy of interaction between
the molecule and the surface

N N
#@Q)= ) uT)= " [~Eod;+uy(2;)] (3)
i=1 i=1
the second term results from the two-body interactions of the particles
located at points i, j,

U(R=Q)= z U(Tw ]) = Z U(Rngi’ “Qj) (4)
u<j i<j
with R;;=R; —R,;.
For this last term the following standard-form expansion is valid:

U(le5 'Qi’ ‘Qj) = Z ‘;tllumz /I(sz) YM](‘Q ) Y’rl;rzz*(‘gj) ¢A(¢Rij) (5)

my,my, A

with ¢,(¢g,) = exp(ilpg, ), @g, is the azimuth angle of radius vector Ry,
Y71(£2;) the spherical function dependent on the molecular orientation, and
an asterisk denotes the complex conjugated value. The coefficients of
expansion (5) are

vﬂx#

52 Ry = (20)7 [ 0(Ry, 2, 2,) YEHQ) YiAQ)) 61(0x,) dox,, 42, 2,

The requirement of the spatial uniformity implies the following symmetry

restrictions on the function v(R;;, 2;, 2)):

(i) It must be invariant with respect to translations.

(ii) It must be rotation invariant with respect to the simultaneous
variations of the azimuth angles ¢,, ¢;, which determine the orientations of
ith and jth molecules, and the variation of anfle @x,;» if these variations are
equal to each other.

(iii) It must be invariant with respect to transpositions of two
molecules.

(iv) The expression (5) must be real.

Here we consider the axial-symmetric molecules possessing the dipole
moment directed along the axis which can be inclined to the adsorbent
surface. In other words, we investigate the orientational ordering due to the
pair interactions, dependent on the orientations of the molecule (e.g., the
dipole—dipole potential) and independent of the geometrical shape of the
molecules. Otherwise, when the “irregular shape” of the molecules is to be
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considered, the above symmetry conditions must be attended with the
requirement of the invariance of expressions (5) with respect to the
symmetry group of an adsorbed molecule. This case, which seems to be the
most general one, corresponds to the interference of ordering effects due to
both the tenzor character of the orientational dependence of intermolecular
orientational potential and the geometrical shape of the molecules.
Assuming the above symmetry conditions, one can transform the
expression {5) to
v(R;, 2,,2)= Y U (Riy) Yol (92,) Y2 (2)) 0, (0R,) (6)
urus

with the following relations valid for the coefficients:
Upind(Ri2) = 0,50 T* (R ;)

mymsy mamy

Uuwz(Ru) — (_1)u1—uzv—uu —llz*(Rlz)

mymj mym;

M

For the dipole—dipole interaction between the adsorbed molecules, for
example,

VaalR 125 24, 02,) = — 8—;3—{[3(dln)(d2n)—~d;’d§’](1 —k)—didy(1+x)} (8)

the nonzero coefficients of expansion (6) are

8ne,d? - - 4nd®
—_— PR =07 (R,,) =—————r
3e,(e, + &,)R1, Ui (Rir) i R (&, + sz)Riz

)

IR ,) =

47d?

v}i(Rlz) = U1_11’41(R12) = "m
1 PIEAST)

with df, df (i=1,2) the lateral and transverse component of the dipole
moment d of molecule, respectively, n the unit vector directed along the
radius vector Ry,, k= (e, —&,)/(e, + &,), &, & the permittivities of the
media adjacent to the interface from the adsorbed phase and the substrate,
respectively.

The relations (7) are clearly valid for the coefficients of (9). As to
expression (8), its validity requires not only the condition R, >/ (I is the
dipole lever), but also the condition R,, > h (h is the distance between the
dipole and interface) is to hold. Note that besides the dipole-dipole pair
interaction, a self-image potential on a dipole given by Ref. 12

2

Ui (2) = _?IC(%W (1 + cos? B) (82)

has to contribute into u,(£2) in (3).

822/38/3-4-8
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Because of the chemical interaction of the molecular dipole with the
surface of the noninert adsorbent, the dipole can be directed either “to” or
“from” the surface, the orientation depends on the structure of the surface
and the type of the molecule. For example on the surface formed by protons,
the dipole moment of the water molecule is directed from the surface. This
unipolar orientation of the molecular dipoles near the surface is shown to
exist by the measurements of the potential jump with the adsorbtion of polar
molecules. ¥

The preferential orientation of the dipoles at the absorbent surface
results in the ranging of the polar angle # of the dipole orientation between O
and 7/2 (see Section 5). (Note that the interval 0  # < z would correspond
to the account of all possible orientations of the dipole). The potential uy(%)
is to be symmetric about ¢ =0 due to the homogeneity of the surface. We
approximate the behavior of uy(#) by some function (see Section §) which
takes into account the restriction of the angle &, and accumulates the
contributions of both the orienting effect of the surface and the expression
(8a).

Perhaps the term spontaneous polarization is not quite correct in this
case as the change in symmetry of the molecules—dipoles arrangement occur
not in free but in partially oriented admonolayer (0 ¢ < 7/2). Although the
appearence of surface component of polarization is obliged to interactions
between admolecules in the system.

It is to be noted that the proposed model of the adsorbed monolayer of
polar molecules is by no means general. One can consider the alternative
model of the adsorbtion of polar molecules on the inert substrate with the
interaction energy between the surface and the moleculare dipole independent
of whether the dipole is oriented “to” or “from” the surface. In this case the
potential u,(#) will symmetrical about #=m/2 [see Eq.(8a)]. The
corresponding treatment can be performed about for such a model following
the lines of the present paper, the differences between them will arise in
Section 5, where the numerical estimates are obtained. The ranging of the
polar angle of dipole orientation between O and 7, and the symmetry of the
potential uy(#) about #==n/2 would lead, as it seems, to the
“antiferromagnetic” type of ordering of the molecules instead of the
“ferromagnetic” one, obtained below for the present model.

As mentioned at the beginning of Section 1, the pair interaction
potential can always be conventionally divided into two parts,

v(Ry, 24, 2) =0(R,) + PR, 2, 2)) (10)
with @(R;)) the short-range pair interaction independent of the orientation

and decreasing quite rapidly with distance (see below) and @(R;, 2;, 2;) the
long-range part which determines the orientational properties of the system.
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The expression (6) together with the relations (7) is valid for the long-
range part of the potential,

PRy, 2, 2)= > ARy Yoi(Q) Y2 () - (0r,) (1)

my,my
M,y

where

P Ry) = (21) ™" f PRy, 2, 02) Y5, *(Q) Y52 (2) 0, ., (9x,)

X dR,;dQ; dgoR” (12)
and
Ot (R12) = Gt "R ), PRhi(Ryp) = (1)1 7429, 50 7R )
(13)

To introduce the collective variables we now proceed to the Fourier
representation of the function @(R;;, £2;, 2;). Using the familiar relation

[«9]
exp((kR;) = 3 £ (kR)expli(p,— ‘PR,-J-)S]
§= 0
with &, (kR ;) the Bessel function of sth order, ¢, the azimuth angle of vector
k, one can transform (11) into the expression

O(Ry;, 02;, Q) =— Zexp( ikR,;) S ghik (k) YE(Q,)

my,my
Mk

X Y":IZ*(_QJ) ¢uz*u1((pk) (14)

g1k (k) = 2mias j v (kR) 8522 (R)R dR
where the summation extends over all wave vector components of the
system.

The total long-range interaction potential can now be expressed in the
form

pR, Q)= DRy, 2;,02)

1 Al AM2 K
5 Z [2 s K) i (k) 2 () (15)
SN2 Z aﬁ‘lﬁé(k) Y‘r:tll(gi) Y":l?*(,Q ) ¢uz ul(wk)] + Z ¢(‘Ql’ Q )

u1 Ha
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where

#(2:, 2) = OR,1, 0, 2)dR,,  alihs (k) = Bypodiai? (k)

)=~ X (IR Y5209 00

is the Fourier transformant of the fluctuation of density operator, p, = N/S is
the density of molecules in the adsorbed monolayer. The last term in (15) is
due to the large-scale fluctutions in the system.

Separating the real and imaginary parts of the Fourier transformant
p“(k), one can represent the function for transfer form (R)—to (p)—space of
the collective variables as follows‘*"®:

£ R, 2)= [] [] dpmk) — £ (k)

k#£0 m,u

~ [ exp [2m’ TS k() pte(k) — F4(K))

k0 m,un

+ o 09050 ~ A50) | (@)

=[ew [6 T Y wb00ps0 - p0)| @) (6)

k#0 m,u

where (dw) stands for the phase space elemental volume of variables w,
[ Teso [ Im,u dwlyi (k) dewly’(k), the Fourier transformant fg,(k), the collective
variable p%(k) and an auxiliary variable w/ (k) are split into the real and
imaginary parts

Pr(k) = i (k) — ipy’ (k)
prik) = pli(k) — ipp(k)
(k) = 0 (k) + iw* (k)

the primed sum and product extend over the upper half-space. When deriving
(16) we used the requirement of reality of the scalar products

2kr0 Zmou Pm) @h(K) and 320, , pu(k) wp(K) leading to the
following relations:

DY 0" (k) = 0} *(k)
(DY b (k) = (k) (17
(=" p " (k) = p* (k)
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Introducing the expressions (2)-(4), (10), (15), (16) into (1), one obtains
OMT, $) =< | 50, R, 9) exp[~B Un(R) — By 8(p. 2) — B, 7 @)]
X (dR)(d0)(dp) (18)

600, 2) = 5= > [mxm a2 (k) o (k) pa (k)

1 N
W 5, B T 1) buen0)

Tt Z 9(2;, Q)
i<j
for the configurational integral of the system. Here Uy(R) =3} ;0(R;) is

the net potential from short-range interaction, (dR)=]]}_,dR;, (d})=
1148, (dp)=TTisol L doil(k) dph’(k) the elemental volume of the
collectlve variables phase space.

In fact, the expression (16) for the configurational integral seems to be
much more involved than the original formula (1) since it contains the
integration in the collective variables phase space in addition to the
integration in the configurational space. If, however, one restricts oneself to
the calculation of the variation of configurational integral due to the long-
range orientational interactions in the system, without the calculation of the
integral itself, the expression (18) turns out to be very useful.

Define first the reference system, relative to which the ordering will be
considered:

Qo= | oxp [ U0 7@ 22 5" 510, 0)) @)@ 19)

i<j

where the net potential in addition to the terms describing the one-body and
two-body short-range interactions contains the term describing the long-
range fluctuations.

The configurational integral (19) can be used as a basis for the
calculation of the distribution functions of the system. First it should be
noted that these functions may be separated into coordinate and angular
parts

PPR s Ry 2,10y R,) = p ™R,y R, FP(Q,,.,2,)  (20)
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feXp[“ﬁB UyR)| 4R, --- dRy
[ exp[—B Uy(R)](dR)
F(”)(.Ql,..., Q,)= fexp[ —Bp? (2) ~ (B/S) Zz<1 9(%2;, ‘Qj)] dCyyy - dly
J exp[—B,% (2) — (B,/S) YN, 6(2;, 2,))(d0)

We shall calculate the correlation function F™(82,,..,2,) (up to the
arbitrary high order) using the multiplicative splitting approximation:

PR, R)=NN—1) - N—n+ 1)

FPQ, 2,) = | | FEP(Q2) 21

i=1
Assuming this approximation to be valid, one can perform the integration in
the equation for the singlet correlation function

dIn FV(Q)) 0% (2,) FP(Q,,2,) 8§(Q,,2,)
=—fip —ﬂBPOJ’ m
o9, o, FYQ) ot

e, (2

(where #, is the polar angle which determines the molecular orientation), to
obtain

exp|—B, % (2,) — Bypo f 9(R2,,02,) Fi'(02,) d2,)
feXp[”‘ﬁB%(Ql) —ﬂapof¢(91a 2,)Fi'(Q2,) d2,] d2,

The expression (23) is the transcendental equation which can be used to
determine the constants characteristic to the singlet correlation function.
Some examples of its usage will be given below.

Using Egs. (18), and (19) the configurational integral can be expressed

Ff]”(f—’l)=

(23)

as
OUT ) =0y [EG)ewp |~ 5 3 S atita(h)pia) o 00| @)
i (24)

£ =g ) R D e |, UR) 7 (@)

1
o 2 2 Z (k) Y (2) Yot ¥(2) 8y, (04
2N k#0 my,my i=1 e ! 2T
LS TY. 3

b S 6@,.9) | @mya 25)
i<j

and, of course, the crucial point in the calculation of the configuration
integral is the accuracy in determining the Jacobian for the transfer to the
collective variables space.
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Using Eq. (16) one obtains for the Jacobian an expression

) =g | @ew |in 3 3 wnkriw)|

k#0 m,u

x j (AR exp | B, U(R) ~ B ()

N X Zai‘nﬁi‘ni(k)Y HCHR A CHE NN

k#0 mq,my i=
My, 4
/if Y 5@, 0)—ix ¥ Y wsksm)|
I<J k0 m,u

where the second integral represents the Fourier transformant of & (p); it
follows then that

Fo)=[r@en | Y T whiphb] @) 26)

k=0 m,u

£ @) =g 0 |, UsR) - B,7(@)

ok Y S R V@) V@) 6, 00

k0 mym, i=

By g@e)-mY Yo (k)ﬁm(k)] @RE)  (27)

i<j=1 k0 m,u

One can define the semi-invariant expansions of the exponent argument in
(27)(14)

<exp (li éix,-) >=exp [ > (n-‘%—,—ffl) (xt e szN>sj| (28)

Uyenns vy i

introducing the semi-invariants {x7*--- x¥), the term with v, =-.. =y, =0
is to be excluded from the sum in (28). The averaging in (28) is performed
with respect to the distribution determined by the SCMF approximation
(19). The first few semi-invariants are

(X105 = (xX0), (X130, = (X1 X,) — (X ){X2),
(122305 = € X X5) — [{X50,)€%5) + € X3)$%,) + (X2x5)(x )]
+ 200, )%, )(x3)
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Using Eq. (28) one can transform (27) to obtain the following
exponential form:

F@=op |7 N Y ameTETED) 9,60+ Y 20)]

k=0 mym, n>2

LY (29)
where
2 (w):—(_m)n SN wbik,) - wbr(k,) AL (ke k)
RO S i, ) At
a<s<n) (30)
N e At 1 Al
(—Iv_n)l-/z—/ml- . ~mn,,(k1""9 kn) = ml(kl) pm':,(kn)>s

The first term in the exponent in (29) implies the multiplicative approx-
imation for the orientational correlational function. Otherwise it should
involve the infinite sum over the semi-invariants defined in (28). The value of
A (K e k) Which is the nth order semi-invariant resulting from the
averaging of the expression exp[—in )l .o> . . @nK)Fn(k)| in &(w)
represents the tensor component of the structure factor of the system.

Using formula (30) one can calculate the tensor components for some
structure factors:

1 N
gtk = [V Y5 Y explitk + k)R]
J

mymy 2
=1

) S @PliiR, R, |61y 31)

1#j

1
= 88280 o+ 5 VR BV 61,16 | 621001 8o
3
/#l‘;‘nz;;:fg(kls kza ks) = 3 <H Y‘ri:',) 5k1+k2+ k3,0
i=1

1
+ —]—V—pSKY‘;l‘l}(Y‘,:,Zz Yf,f) h(Z)(kl k; +k3)

+ (Yar(Yar vy R (ky, ky + ky)
+ (Y XY Yoy kP (ks k, 4 k)]

1 3 A 3
+ P Ok ko k) [T (VRO T 6oulon)  (32)
i i=1

=1
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where

jm(kn k,) = J hm(Rn R,)exp[i(k; R, + k,R,)| dR, dR,

h(3)(k1 Ky, kS)ZJh(S)(Rv R, R;) expi(k, R, +k,R, +k;R;)|dR, dR, dR,

are the Fourier representations of binary and ternary coordinate correlation
functions (20):

h(z)(RI sRy) = g(z)(R1 sRy)—1
AORL Ry R) = gP (R, Ry Ry) — gP(R LR, — g (R, Ry)
— gPR,, Ry +2
P "R, R)=p™P(R,,...R,)

The obvious generalization of (3), (31), (32) for the nth order semi-
invariant A1 00 (K, .. k) S

M":'ll'....-‘:n",,(kl""’ k,) = j < H Y‘;lii> 5k1+ U
i=1

i .
1 ny In
2 Hj M
b XX (Tl Y vy
: n>l 1K< <y V=1 J=1ny 1y
in1+1<"‘<in

Xh(z)(ki1+"'+ki +'”+ki,,)

nl’kin1+1

1 i1
) ry
3‘N pO . ) il m;
: m>hina>l 1K< o<y V=1
n=Ri=n22 1l gy < <y,
in2+1< v <y

X<ﬁ vy 11 vz) (33)

J=ny J=1Iny41

Xh(3)(kil+...+kin k. +---+k;

s By i ’ki
1 np+1 ny ny+1

1 n ) n n
For 28 1T B k)| T1 64 00)
j=1 i=1

R +ki,,)+

where

ROk ) = [ AOR, o R,) expliCk, R, + - +1k,R,)] dR, - dR

n
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is the Fourier representation of the nth-order coordinate correlation function,
and function A (R,,..., R,) is defined by

k
AR,,...,R,)= Z (=D 1k~ 1) H g‘""’(R,-l,..., R, )
{n7) =1 i
<2{;1:z,»=n)
where the sum extends over all possible unconnected subsets of the whole set
of variables R,,..., R, and the product extends over k subsets.
Using (29), (26) can be written in the following operator form‘®:

~ {0
co)=en | ¥ 7 (2)] %0 (4)
n>3 {4
where
59)=[ exp | S S )40 | £, (w)dw) (35)
#0 m,u
1
@ =ow |3 T S aEKEYR) fure 00 + 90)]
k0 mymy
Mypy (36)
~ {0 (~-1)'N o"
7 B B il A T R
(&) =iy o, k) S ey
a<s<n) (37)

The advantage of this form for the Jacobian for the transfer to collective
variables is the possibility to calculate the zero approximation to the
function € (p) assuming the Gaussian distribution for Fourier components of
density fluctuations. In subsequent sections we shall work out the procedure
to determine & {p) with respect to £,(¢), the transfer Jacobian in Gaussian
approximation, )

3. RANDOM PHASES APPROXIMATION

One of the remarkable features of the collective variables method in the
form, first proposed in Ref.2 and developed further in Ref. 3, is the
possibility to calculate the configurational integral in the Gaussian approx-
imation, termed RPA.

With the exponent in (34) being omitted, the zero-order approximation
is

OT. S) = Qsr Crp (38)
with
1
Ou=[ o |- 5 ¥ ¥ amkpnpnr ] @) 9

k%0 my,m;
MHysphy
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and €;(p) follows from (35), (36) with the coefficient D,(w), which can be
represented using the expressions (17), (31) in the symmetrical form

Dy(w)=—- kZ Z A (k) @ (K) w032 (K) (40)

/‘,i,ll‘,‘ni(k)=[<Yi‘n‘1Y‘n‘é*>+Po<Y‘“><Y‘”*>h(”(k)] Pur-u (00 (41)

Here h” (k)= [ exp(ikR,) *®(R,,) dR,, is the Fourier representation of
the coordinate correlation function which for the uniform systems is
dependent on the radius vector of the distance between two molecules.

Diagonalizing the quadratic form (40) and reducing the expression (36)
to the product of Gaussian integrals one obtains

Fo)mexp |~ ST () s ) pt (k)
2 k+0 ml,mz

=y [ Tk (Y YR 6, (py)
k#0 L my,m;y
My,

— In(det mA% 42 (k) ] g (42)

X exp

for this expression, where det.#7172(k) and (#~'(k))sn2 are the deter-
minant and the matrix inverse to ' mim(k), respectively. Introducing the
expression (42) into (39) and performing the integration one obtains the

expression for the Helmholtz free energy,

SYOW(T, S
b =0 2D (4 7 4 )
SN
By Fia=—In—r (43)

BpFsp=—In Qg
BgFrp=—1n Orp

=5 3 maad+. 2w aw)

k+#0

S i R(Yh YRy 6, M(wk)]
o
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where #,;, #gy, F#zp are the components of the free energy for the classic
ideal gas, the SCMF approximation, and the RPA, respectively; Q,(7, S) in
(43) is represented in the form (38); .#(k); d(k) are the matrices written as
operators; [ is the unit tensor.

The second-order distribution function which is determined by the long-
range order interactions in the system can be obtained by differentiating

expression (43) with respect to the potential (11):

PRz, 24, 12,)

5(ﬂB;;‘F + 85 RP) 2F(1’(.Q )F(”(.Q )

5BB¢(R12"QUDZ) -
Z > exp(—ikR,,) Yii¥(R2,) Y52 (2,)0,_,,(00)
k=0 my,m,
” Myshtz
o o ,
X an k) o Indet(l + #(k) d(k) — (Y Yi2*) 6, (0 (44)
1 A 42 (k) o . .
+ =V [ L In det(F + .# (k) 4(k))
T & B OR,y, 2, 2,) A M et A
i, Hp

OV Yo *
S (X (72 5’83(;(1{:2’[221,92)]

where

i(f(2)) 2p5 1 1
ol B (¢sian [ F@) FO@) 6@, 0) 4040,
~ [ 1@y F§(2) FO@) (2, 2)) a2, a0,
-5 (U@ [ @)@, + 4@, 9] do
~[ @) PP @6, 2) + 90, 2:)

@) = @)+ £@0)]) FP@) F (@)

and f(£2) is an arbitrary function dependent on the molecular orientations.
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The total distribution function consists of the distribution function
which is due to the short-range interaction [Eq. (20) for the second order]
and the function due to the long-range interactions

g(Z)(Rn’ Q2,2,)=pPR,,2,,2,)+p,R,,2,,2,) (45)

and the condition for the function (45) to vanish for R,, < ¢ (o is the hard-
sphere diameter) yields the restriction to be put upon the long-range
interaction potential domain of definition

PR,,,02,,2,)=0 if R,<o (46)

Thus the condition
PR, 02,,0,)=0 if R,,<o (47)

is to attend to the formula (44), which now completely defines the
distribution function for the long-range interactions.

The expressions (46), (47) are the consequences of the additional
assumption of p®(R,,, 2,,02,)=0 when R,, < 0 used in (45) and satisfies
the condition of potential minimum fp(Fg + F5p) in respect to
B PR ,,,02,,02,) in the domain R,, <0.""*'® In the more general case
without using the approximation with respect to p*(R,,,2,,0,) the
condition of the optimal separation of interactions leads to self-consistent
determination of S, ®(R,,,2,,£2,) potential in domain R, <o with
condition #P(R,,, 2,,2,) =0 at R,, < 6 (mean-spherical approximation).

Using the expression (43) one can calculate the singlet distribution
function which describes the ordering in the system

1 88,7
FO@,) = s~ P, + F@) @8)
B¥0 1
where
1 AL (K) 9 In det[] + A (k) d(k)]
(1) 0)=—" N\ 1M
@) =5 2, 2 [cwyu(nl) A

YY)
S(YL Y2 * ]

= ) S0 =550

(49)
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0
s = | @[ Fr@ @) e aaan,
- [ r@) FP@) F 90,0, a0, dn,
(50)
— (@) | FP@0) 9(2,2,) e,

+[ 1@) @) 6@,2) da, + (@) - @) F@)

and from Eqgs. (49), (50) it is seen that the addend F{J(£2,) does not affect
the normalization of the function F'(Q,).

The form of Eq. (50) implies that the semi-invariant-like expressions
combine into the function F{2(2,). Thus this addend will be small if either
the deviations from the mean value, or the absolute values of polarization
will be small. We refer the numerical estimations of the polarization
according to formula (48) to the last section.

4. THE CORRECTIONS TO THE RANDOM PHASES
APPROXIMATION

We now proceed to the most important part of the problem, the
estimation of the exponential terms in Eq. (34) and the calculation of the
configurational integral (24) using the value of & (p). This approach in fact
generalizes the results obtained in Ref. 3 for the order appearing in the
system.

Note that the contribution of the diagrams expressing the corrections to

the RPA is negligible provided the assumption of small polarization is
adopted in Section 5, so that the reader interested in the physically relevant
results can skip this section.
' The corrections to £,(p) can be obtained by acting the operators
2,(8/0p) and their products on this function, but for the result of the
integration to be nonzero, it is necessary to separate the terms which are in
the form pp! (k) pp2(k).

Some definitions from Ref. 3 are useful to introduce. The sum over the
vectors k; + --- +k, will be termed the closed one if k, + --- + k, =0, and
the irreducible one, if it can not be separated into the closed patterns (for
instance, k, + - + k, =0, ks + -+ + ks =0, ks + --- + k, =0, etc.).

The simplest term describing the contribution of the exponential
operators in (34) with all the sums closed and irreducible, is the product of
two paired operators
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AV 3t N
35 (5)0: (5)rr -z & Anmnko k)

op 23 N, 2
Myyeeey ‘lé
X/MW?JU *(k k k) 82 -
mamymy A1 T2 p‘r:zll(kl)apm*(kl)
d* a*
Ee(p) (51)

30#2(1(2) apys* (k) Opi(is) ophi (ks)

the combinatorial factor 3! in the numerator arising from different pairings
of derivatives in each of the operators D,(d/dp). The paired differentiation of
€4(p) yields

82%@) 1 Uz -1 win 1
i | 2 R @ )
X i) — (0 | 2200 652)

The contribution from the pairing of two operators into the
configurational integral can be calculated by introducing (51) and (52) into
(24), integrating over the collective variables and transforming to the coor-
dinate representation. With the factor Qg Oy, omitted, one obtains

1
2.3, Z fq%‘,iéi‘n’s(Rl, R, Ry) g, nin AR, RS, R)
yseeny u’3
3

Hiu ,

X ,‘EII gmjm;(Rl_ Ri/) de dR3 (53)

where
N
le"tlzz"‘"za(Rl’ R,.R;) = S3 k ; k //;i‘r:lzz‘rlnas(kn k,, k;)
1:52.K3

X exp[—i(k,R, + k,R; +k;R;)] (54)

gnm R’ —R) = 71,— ; [G(k)(T + #(k) a(k))~ 1|4~ exp[ik(R’ — R)]
(55)

It should be noted that the tensor component of the correlation function (55),
which is the tensor analog of the screened potential, does not coincide with
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the corresponding component of the correlation function resulting from

Eq. (44).
The definition (54) can be generalized

.....

X exp[_i(klRl + ot kan)] (56)

The detailed calculation of the function (54)

It (R, Ry Ry)

1Mmams
1 . 3 .
:F Z exp[—i(k,R, + kR, + k;R;)] ; < H Y;',-> N5k1+k2+k3,0
kl,kz,k3 i=1
+ p(2)[<Y’r:zll><Yﬁzz Y‘r;133> hP(k,, k, +k;)
+ YNV Vil ) RP (ky, ky +Ky)
+ (VXY Vi) P (ky, Kk, + k)]
3 3
03 11 v B sk T 6o (57)
i=1 i=1

is as follows. Within the continuous distribution of wave vectors, the first
term in (57) can be represented as

3
N - .
<| | Y‘r:z',> 3 Z exp[—i(k, R, + k,R; + k;R;)
i=1 S 5k

— (U @y, + 12 Ok, T U3 P1)] Ok, 4 iy kp00

3
- <n Y;"i> (27) %, lim j dR dk, dk, dk,

i=1

X exp{—i[k,;(R, —R) + k,(R, —R) + k;(R; — R)|}
X eXp{_i(/‘M”kl + Uy Py, +ﬂ3‘/7k3)} exp|—e(k, + &k, + ky)] (58)

Performing the threefold integration over the wave numbers one obtains the
product of three independent integrals, each of them equal to

o (r)=(2n)? lim0 J exp(—ikr — ek — iugp,) dk
£ 4
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and integrating over ¢, yields

Fu®)=@m) " i emmor lim [ e % £ (kr)k dk

‘ o(r), u=0 (59
=IO L Mul+ 2) T(12) 31, 4>0
2 T Tl — 2 QD) < L (1) u<0

with I'(x) the I'-function. Here to obtain the final form of the integral (59)
the tabular value'” for the integral

jwe_sxgu(rX)xdx:w (1 ﬁ) —32

eI +1) e’

-1 r’
XF<—‘H_2—7%MU+13_E—2_)5 6>0,ﬂ>0

and the relation between the hypergeometric function
u—1 u r? )
FlEe— - £. oD
< 2 H 2 M + 17 82

T+ 1) I(1/2)

w12 r2 —{(u—1)/2
(=1)* <__2>

T T T(w+3)2) e
p—1 u+1 1 ¢
<F (fg - g )

I'p+ 1)1(-1/2) wn _i —u/2
fTa-narom Y (%)

L w3 &
XF(?"?T"?)

were used.

Using the value of (59), one obtains for the contribution of (58) the
following expression:

Do <[j]1 Y‘,;;'i> | 1j1 . (R,—R)dR (60)

Note that the angular dependence of the function .7, (r) do not lead to the
divergence of the integral at r — 0.

822/38/3-4-9
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The typical term in square brackets in (57) being integrated, transforms
into

(2m)~p¥(¥a)(¥i Ya2) lim [ dk, dk, dk, dr, dr, KO, 1)

3 3
X exp [“i Z (k;R; +ﬂ1(ﬂR Z ik + (k, + ka)"z)]
= j=

= (Ve Ye Vil [ B9, 1) 5 R, I)HmR r)dr,dr,  (61)

and the last term in (57) transforms into

3
Cen) =9} [ ] vy Jim | dx, dk, dk, dr, dr, dr, RO(e,. 15, 7,)
~
3 3
X exp [—z‘ DUKR 1) o —€ D kj]
ji=1 j=1

3 3
C=n [T [ hOC e 1) [T 2R, — 1) dr, dr, dr, (62)
j=1 Jj=1

The contribution from pairing of two operators D,(d/dp) is convenient to
represent using the graphical notation introduced in Ref. 3. The function
ghius (R, R,, R;) corresponds to the complex vertex‘® that includes the
field vertices upon which the integration is performed and the correlators of
the spherical functions products [see Eqs. (60)-(62)]. The field vertices are
connected with each other by the lines which represent the tensor
components of the correlation function (55).
Thus the formula (53) can be expressed in the form®

N ™\
: L= L +
731 2 o T
7 1

—-\ — —_— —_— — —_— —

. AN /A 7 A\ \ /I A\ /A
l'l"l 1! I 1l<| |V T
— 4= T e e T B T L S sl
| | 2 b2 ) e 23—
\ N/ Ny N N N/ Ny

\.. \_ ~— —-— ~— ~ ~— ~—

(63)

Here the diagram with the complex vertices in lhs represents the contribution
resulting from the pairing of two irreducible operators D;(é/dp). The first
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diagram on the right-hand side corresponds to the pairing of the vertex deter-
mined by Eq. (60) to its conjugated vertex. The function (60) corresponds to
the filled field vertex, at which the three lines end off. The line corresponds to
the function (55), with its arbitrarily defined end corresponding to the second
indices of the tensor (55) and the conjugated values of the spherical
functions in the correlators.

The next diagram in the rhs of Eq. (63) represents the bonding of the
vertex (60) with the vertex of type (61). The function (61) corresponds to
two field vertices enclosed into the dashed contour and emitting one and two
lines. The rest of diagrams on the right-hand side of Eq. (63) corresponds to
the bonding of the vertices (61) and (62) with each other.

One can generalize the above definitions for the case of pairing of two
irreducible operators D,(8/0p) with n >3, the case when the complex
vertices arise, containing m field vertices (m > 1). If the number of the
vertices exceeds one, they are to be enclosed into the dashed contour. The
function

Po <ﬂ Y“’>:ﬁﬂ;f(Ri—R)dR if m=1 (64)

i=1

or

a0 T ) [

J=1 Vi=ng+dnp 41
m AR
x |1 11 Z Ry—r1)dr - dr,  if m>2 (65)

J=1i=np+ o fnj_1+1

corresponds to every complex vertex with m field vertices emitting n,,..., 11,,
lines.

Every diagram A with its topological properties contributes to the
expansion of two pairing operators D,(6/8p) with the weight

1 n! 1

TN = 1o =l (66)

where the symmetry number ¢(4) of the diagram is equal to the number of
permutations of bonds and of the transformations of the diagram which
remains its topological properties unchanged. In the formula (66) the factor
n! in the denominator is related to the coefficient remaining after the pairing
in the operators D,(8/0p) and the one in the numerator results from
permutations of the bonds. The inverse factorial 1/r! corresponds to the total
of the lines connecting the pair of field vertices of the diagram.
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It can be readily shown that the factors before each of the diagrams
from (63) correspond to the above rules. Thus for instance for the first
diagram on the right-hand side of (63),

o(e)=2-3

with the coefficient 3! corresponds to all possible permutations of the bonds,
and the factor 2 is related to the transformation of the diagram into itself by
the rotation through the angle of 7 around the vertical axis.

The pairing of three (or more) irreducible operators can be performd in
the similar manner. For the case of three operators paired, the lowest order
will be characteristic to the term D2(8/dp) D,(6/0p) the corresponding
contribution is

ll" I
- =— | 0
2021)? 2 T |
\ "

—

|/'\\ I I\ I\ I\
1 I b by [
aglant gt
l 2 SRR Bl ) |
BN N/ \_/ o, \_/
(67)

The diagrams on the right-hand side of Eq. (67) follow the “complication” of
the signle vertex with three and four lines; the diagrams corresponding to the
simultaneous complication of these two vertices are omitted. As before, the
contribution arising from every vertex corresponds to the expressions (64),
(65), and the weights of each of the diagrams are in agreement with the final
form of Eq. {(66).

The contribution of the irreducible operators (34) to the configurational
integral (24) is to be attend with the contribution from the derivatives paired
in each operator D,(5/0p).1® Only the operators with even n will contribute
to the final expression.

Consider the value resulting from the operator D4(d/8p) with all internal
derivatives paired. Performing first the pairing in the Eq. (37) with the factor
of "D (k, + k, + k;, k, + k; + k¢) [see Eq. (24), (33)] one obtains
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1 ===~

= (> (68)

-~

N — ——

The combinatorial factor in the lhs arises from the partition of the wave
vectors into two groups consisting of three vectors and their subsequent
pairing inside the groups.

The diagrammatic form of the expression (68) corresponds to the first
diagram on the right-hand side of Eq.(63). Performing the detailed
calculation one can prove that with the derivatives in the operator D(&/dp)
being paired, the diagrams arises possessing the topology similar to diagrams
in (63) with the dashed contour enclosing them. These diagrams contain the
correlation function with the order equal to the number of the field vertices
of diagram enclosed with the dashed contour. It is to be noted that the
pairing of the derivatives inside the operators, i.e., the account for the
reducible sums in the expression (37) results in the manifold of the diagrams
more than sufficient for the correspondence with the irreducible diagrams to
be stated.

Among the omitted reducible diagrams the one possessing the lowest
vertices and bonds number is

1 /_—-_\\ 1 ' /
5 ( <> ) =P 2 (YRYRXYiry e
~ —— m;

.....

Misesay )

X [ dr,dr, dR, - dR{AD (@, 1,)

X [T 2R, 1) 7 FHR — 1) gh4 R, ~R)) (69)
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The terms representing different compositions of the irreducible and
reducible operators will contribute to the configurational integral too.
Among them the term with the lowest order of vertices and bonds number is

- -~ 1
N—___ 3
(ﬁ//_zpomz

Toeeatrtly

3
(11 yse) oo, = vapcrsiviowis

e — - -

xde dr, dr,dR, --- dR, R, , t,)

3 3
X[ 7 ®Ri—t) Z, R, —r) [ | 75R{—R)
i=1 i=1

4
X «7;"/}(R§ — 1) Jﬂﬂkg(Ri —R) 1_[1 g;l,;’l(Rz —R})

so far only the connected diagrams were considered. The disconnected
diagrams will of cource contribute into (24) in the form of all possible
powers of the connected diagrams muliplicated, each of them divided by the
factorial of the pover value.”® This results in the total contribution into the
configurational integral equal to the exponential function of the sum of
contributions of all connected diagrams. The thermodynamic potentials, in
particular the Helmholtz free energy (43) is represented by then sum of the
contributions of all the connected diagrams described above [with the
inverted sign, see Eq. (43)].

The calculation of connected integrals defined by the formulas (63),
(67), (69), (70), even for the case of low orders, requires the compicated
integration in the configurational space of some molecules to be performed,
involving the correlation functions of more than second order with the short-
range interactions.

5. NUMERICAL CALCULATIONS AND DISCUSSION

We now proceed to the calculation of the singlet correlation function
defined by the Egs. (48)-(50) and with all the connected diagrams described
above with inverted sign to determine the polarization of the system.
Restricting ourselves to the calculation of the mean value of polarization for
small deviations of the dipoles of molecules from the vertical position (at the
value of the polar angle # = 0), we rewrite the expression (8) for the model
dipole—dipole potential in the form of the expansion in spherical functions
Y] =Y3(2)— (3/4n)"* [instead of Y3(£2)], and Y£'(2). This results in in
the trivial substitution of Y9() instead of Y9(£2) into the above expressions;
the additional orientational-independent term arising in the pair interaction
potential can be introduced into its short-range part.
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With these modifications being performed, the short-range potential
becomes

o, if R;<g

oRy)=1 26, , (71)
— % if Ry>o
v&1(e; + &) Rj;

From the Egs. (8), (9), (14), (15) one can calculate the nonzero matrix
elements of ay!%2(k):

agi(k) = afolk) = yig(k), aji(k) = Vlfo(k) (72)
an (k) =y (k) = =3y, iy(k), ay, (k)= apb k) = —y,ip(k)
where
_4<7z>”2 &, _87rsza __4_7za ‘e 2nd*Byp,
=3 e "= 3¢, e e (e, + €,)0

i, (k) :fo £ y)xtde (m=0,2;y=ko)

The oscillations of the correlation function h®(R;) decreasing as R}’
according to the character of the potential decrease can be modeled by the
function

~1, if R;<o

3 R,

hP(R,) = A—%—cos [271.’(———”—~1)], if R;>0

Ry o
’ A = const

(73)

and as the intention of this section is the estimation of the spontaneous
polarization due to the pair dipole~dipole interactions in the system, the
dependence of the dimensionless constant A on the thermodynamic
parameters (temperature and density) is not significant.

Define the dimensionless value of the longitudinal component of the
polarization by the expressions‘?

/2 2n
pZJ d¥ sin 19J do sin & cos pFV(2) = p, + 4p (74)
0 0

/2 2
Do =J d? sin z?f dg sin & cos pF{(2) (75)
0 0
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(76)

/2 2n oAF
Ap:f dﬁsinz‘}j dq)sinﬁcosw[ ! ]
0 0

N Suy(2)
F{P(02) = exp(ap, sin & sin ¢) G(#, 9)

/2 2n -1
X U d? sin ﬂf do exp(ap, sin 9 sin ¢) G(3, (p)] an
0 0

where

AF =F — Fop,
2
ZEZ p cost— uo(ﬁ)]

1

G(?, ) =exp [(apo +¢) sin & cos ¢ —

pi=(sinBsing),  p,=(cos®),  uy(®)=b(1—exp(~b, )
c=pyE,d, b= Bgu,

and the coefficient b, determines the angular dependence of u,(#). Here u, is
the energy of bonding of the adsorbed molecule to the surface, ¢ the dimen-
sionless value of the external electric field directed along the axis ¢ = 0. The
expression for u,(#) determines the angular dependence of the energy of
bonding of the adsorbed molecule to the surface.

The vector of polarization is expressed by (74) in the form of two
components, the first of them p, follows from the SCMF theory [see
Eq. (23)] and the second Ap results from the variation of the free energy 4%
determined by SPA |[Egs. (43), (49)] and by all connected diagrams
considered in Section 4. The expression (77) explicitly represents the singlet
correlation function in the SCMF approximation (23).

As it was mentioned above the expression (75) is the multiparametrical
transcendental equation for the polarization in the SCMF approximation.
This equation was derived and investigated in Ref. 1° for the case p, = 0 and
in the first-order iterative approximation for p, = (1 — p2)"/2. In general case,
however, we expect p,#0 and at sufficiently large polarization
(corresponding to the approximate inequality a(sin® & sin ¢) > 1, see below)
the parameters of the singlet orientational function and the value of the
polarization vector are to be calculated from the following set of the
transcendental equations:

*The Egs. (11)~(13) of Ref. 1 corresponding to the Eqs. (75) and (77) of the current paper
contain an erratum in the definition of the permittivities dependence of the a, and the term
sin ¢ is to be inserted into the integrands.
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/2 3
Po=Gy! j d? sin ﬁf dy sin # cos ¢ cosh(ap, sin 9 sin @) G(?, ¢)
0 0
n/2 7
p =Gy j dif sin ﬁf do cos # cosh(ap, sin # sin ¢) G(&, ¢) (78)
0 0

PlzGQ_I[n

Y0

/2 T
d¥ sin ﬂj do sin @ sin ¢ sinh(ap, sin # sin @) G(3, ¢)
0

where

/2 v
Gy= ' df sin ﬁj dg cosh(ap, sin & sin ) G(3, ¢)

0 0
These equations were solved using the computer program involving the
iteration procedure and the chord method"® the results are plotted in Fig. 1
showing the dependence of p, on ¢ at ¢, = ¢, =1 for different values of the
parameters a, b, b,. The calculations show that there are no values p, # 0 at
all, i.e., only the longitudinal part (directed along the field) of the surface
component of the polarization vector can exist.

We now turn to the more precise calculation of the polarization using

Eq. (74) and taking account of the contribution of the free energy variation
due to RPA and all connected diagrams into the Ap. We shall consider the
case of small polarization (p < 1) and in the calculation of the free energy
we shall restrict ourselves to the evaluation of the first-order term in p.

A

Fig. 1. The dependence of p, [Eq. (80), dashed lines] and p = p, + 4p [Egs. (79), (80), solid
lines] on ¢ at different values of parameters: 1, a =4.8, b = 8.0, b,=1;2,a=46,b=80,
b,=1;3,a=42,b=8.0, b, = 1. For curve ABCD see text.
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First it can be seen that in this approximation the contribution of the
diagram into A# can be neglected. In fact, the most significant contribution
is due to the diagram (69), which contains the least number of the field
vertices and bonds entering them. If one realizes that (Y$) ~ p?, (Yi') ~ p,
calculate the order of the correlators of the products of spherical functions,
and use Egs. (55) and (72), the contribution of this diagram will be proved
to be O(p*). Thus only the RPA term [Egs. (48)~(50)] will contribute into
Ap. Taking into account the terms of order p in det(f + .#4) and performing
the calculations defined by expressions (48)—(50), (76) one obtains

Yy o
Ap=A4 <———I————sinﬁcos > cos(2zx)x 7 dx 79
P =47\ S5 (@) 0 fl (27x) (79)
where the Fourier transformations (73), the expressions (72), and the
asymptotic formula

.t , _o(z—1z")
lim L £lx2) Eplxz')x d ==

were used. For the functional derivative one has to substitute the expression
(50); the averaging in (79) is to be performed over the distribution with
respect to the SCMF approximation (77) with the constants which can be
calculated from the set of the equations that can be obtained from (78) by
performing the ¢ integration at p, = 0:

n/2
Po=G" jo sin & G,(9) do

n/2
p,=G! fo sin & cos & G(#) dd

(80)
2as,

G, () =1,[(ap,+ c) sin ?] exp [— chosﬂ—uO(ﬁ)], m=0,1

£
x/2

G=[ Go(®)sinddp
0

where [,,(x) is the Bessel function of an imaginary argument. The result of
the calculation of p, according to the SCMF theory [Egs. (80)] and the
values of the resulting polarization vector p = p, + 4dp [Eq. (79)] are shown
in Fig. 1 for ¢, =¢,=1.

The curves p,y(c) contain the metastable (BC and DE) and the unstable
(CD) sections (of the van der Waals curve); this feature is due to the
assumptions involved in the SCMF approximation.”” The restoration of the
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stability using Maxwell’s rule"'® yielding the straight line BE enables us to

calculate the polarization jump at zero external electric field, thus the system
undergoes the first-order phase transition.

The van der Waals loop characteristic to the curve of types 1 and 2
vanishes at sufficiently low values of a (or large b and b,), so that the
resulting ¢ dependence of p becomes monotonic and the first-order phase
transition does not exist. It is seen from Fig. 1 that the disconsistency
between p and p, becomes more significant as p increases.

For the typical values of the parameters (characteristic for the water
molecule) 0 =4.0 A, d,=1.84D, and T=300K, p,=4/n0* one obtains
a = 5.15. The constant b describes the bonding energy of the molecule with
the substrate and for u, = 4 kcal/mol b = 6.66.

Thus the monolayer packed sufficiently dense with the molecules
(large a) polarizes, and the arising of the total macroscopic dipole moment
corresponds to the first-order phase transition. The polarization of this kind
was in fact observed experimentally (see Refs. 20 and 21); this polarization
results in the arising of the rigid dipole moment of anisotropic colloid
particles in a polar media. One can easily prove that the polarization of the
surface of colloid particle leads to the constant dipole moment arising along
the anisopy axis.”

Finally it is interesting to discuss from the viewpoint of the general
results obtained in the present paper the behavior of the polarization in the
model in which all the molecular dipoles possess the same orientation with
respect to the surface. We proposed this model in Ref. 1 as an example of the
most simple approach to the calculation of the polarization with the possible
variations of the dipole orientations neglected. The solution of the
appropriate algebraic equation corresponds to the fractured curve LMNP
shown in Fig. 1 for parameter values @ = 10.5, b - b; = 9.5 (see Ref. 1). One
can show however the assumption of the multiplicative splitting (22) to be
exact for this model. It follows from Eq. (50) that the corrections to the
singlet correlation function arising from the RPA and from all connected
diagrams vanish, thus in the framework of the proposed model the solution
for the polarization is exact.
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